問題	選択方法
第1問	必答
第2問	必答
第 3 問	
第 4 問	いずれか2問を選択し, 解答しなさい。
第5問	

数学 II ・数学 B (注) この科目には、選択問題があります。(17ページ参照。)

第 1 問 (必答問題) (配点 30)

[1]

(1) 次の問題Aについて考えよう。

問題A 関数 $y = \sin \theta + \sqrt{3} \cos \theta \ \left(0 \le \theta \le \frac{\pi}{2} \right)$ の最大値を求めよ。

$$\sin\frac{\pi}{\boxed{7}} = \frac{\sqrt{3}}{2}, \cos\frac{\pi}{\boxed{7}} = \frac{1}{2}$$

であるから, 三角関数の合成により

$$y = \boxed{1} \sin \left(\theta + \frac{\pi}{\boxed{7}} \right)$$

(2) かを定数とし、次の問題Bについて考えよう。

問題B 関数 $y = \sin \theta + p \cos \theta \left(0 \le \theta \le \frac{\pi}{2} \right)$ の最大値を求めよ。

(i)
$$p=0$$
 のとき、 y は $\theta=\frac{\pi}{7}$ で最大値 π をとる。

(数学Ⅱ・数学B第1問は次ページに続く。)

(ii)
$$p>0$$
 のときは、加法定理
$$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$$
 を用いると

を用いると

$$y = \sin \theta + p \cos \theta = \sqrt{2 + \cos (\theta - \alpha)}$$

と表すことができる。ただし, α は

$$\sin \alpha = \frac{2}{\sqrt{2}}, \cos \alpha = \frac{2}{\sqrt{2}}, 0 < \alpha < \frac{\pi}{2}$$

を満たすものとする。このとき、yは $\theta = \square$ で最大値 **√** サ をとる。

キー~ 「ケー」、「サー」、「スーの解答群(同じものを繰り返 し選んでもよい。)

- 1
- $\bigcirc -p$

- (a) $(1-p)^2$
- **b** $(1 + p)^2$
- シ の解答群(同じものを繰り返し選んでもよい。)

0

α

(数学 II · 数学 B 第 1 問は次ページに続く。)

- 〔2〕 二つの関数 $f(x) = \frac{2^x + 2^{-x}}{2}$, $g(x) = \frac{2^x 2^{-x}}{2}$ について考える。
 - (1) f(0) = v , g(0) = v である。また,f(x)は相加平均と相乗平均の関係から,x = v で最小値 v をとる。 g(x) = -2 となるv の値は $\log_2(\sqrt{v} v)$ である。
 - (2) 次の① \sim ④は、xにどのような値を代入してもつねに成り立つ。
 - $f(-x) = \boxed{ }$ $g(-x) = \boxed{ }$ $\{f(x)\}^2 \{g(x)\}^2 = \boxed{ }$ $g(2x) = \boxed{ }$ f(x)g(x) $g(x) = \boxed{ }$
 - ト, ナ の解答群(同じものを繰り返し選んでもよい。)
 - $\bigcirc f(x)$ $\bigcirc f(x)$ $\bigcirc g(x)$ $\bigcirc g(x)$

(数学 II · 数学 B 第 1 問は次ページに続く。)

(3) 花子さんと太郎さんは、f(x)とg(x)の性質について話している。

花子:①~④ は三角関数の性質に似ているね。

太郎:三角関数の加法定理に類似した式(A)~(D)を考えてみたけど,つ

ねに成り立つ式はあるだろうか。

花子:成り立たない式を見つけるために、式(A)~(D)の β に何か具体

的な値を代入して調べてみたらどうかな。

太郎さんが考えた式 -

$$f(\alpha - \beta) = f(\alpha)g(\beta) + g(\alpha)f(\beta)$$
(A)

$$f(\alpha + \beta) = f(\alpha)f(\beta) + g(\alpha)g(\beta) \quad \dots \quad (B)$$

$$g(\alpha - \beta) = f(\alpha)f(\beta) + g(\alpha)g(\beta)$$
(C)

(1), (2)で示されたことのいくつかを利用すると、式(A)~(D)のうち、

ネの解答群

(a) (b) (c) (d) (d) (d)

第 2 問 (必答問題) (配点 30)

(1) 座標平面上で、次の二つの2次関数のグラフについて考える。

$$y = 3x^2 + 2x + 3$$
 (1

$$y = 2x^2 + 2x + 3$$

①、②の2次関数のグラフには次の共通点がある。

共通点 -

- y軸との交点のy座標は ア である。

次の \bigcirc ~ \bigcirc の 2 次関数のグラフのうち、y 軸との交点における接線の方程式 が y= $\boxed{ 1 }$ x+ $\boxed{ }$ $\boxed{ 2 }$ $\boxed{ 2 }$ である。

エの解答群

$$0 \quad y = 3x^2 - 2x - 3$$

a, b, cを0でない実数とする。

曲線 $y = ax^2 + bx + c$ 上の点 $\left(0, \boxed{\mathbf{J}}\right)$ における接線を ℓ とすると、

その方程式は $y = \begin{bmatrix} \mathbf{n} & \mathbf{x} + \mathbf{b} \end{bmatrix}$ である。

(数学Ⅱ・数学B第2問は次ページに続く。)

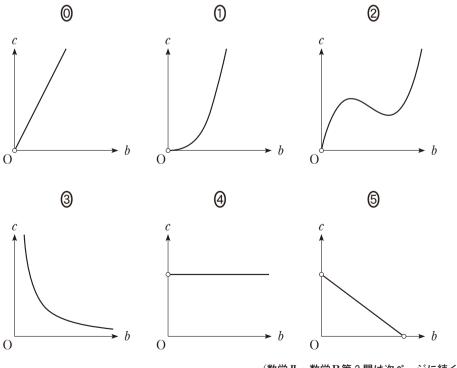
接線 ℓ と x 軸との交点の x 座標は $\boxed{ 2$ である

a, b, c が正の実数であるとき、曲線 $y=ax^2+bx+c$ と接線 ℓ および直線 $x=\frac{\boxed{2r}}{\boxed{3}}$ で囲まれた図形の面積を S とすると

である。

③ において、a=1 とし、S の値が一定となるように正の実数 b、c の値を変化させる。このとき、b と c の関係を表すグラフの概形は t である。

セ については、最も適当なものを、次の0~6のうちから一つ選べ。



(数学Ⅱ・数学B第2問は次ページに続く。)

(2)	座標 平面 上で	次の三つの	3次関数のグラフについて考える。	
(4)	生活工田上(,	$\mathcal{N} \mathcal{O} \longrightarrow \mathcal{O} \mathcal{O}$	ひ外因数ツン ノノにフいし与んる	٥

$$y = 4x^3 + 2x^2 + 3x + 5$$
 $\textcircled{4}$

$$y = -2x^3 + 7x^2 + 3x + 5$$

$$y = 5 x^3 - x^2 + 3 x + 5$$

④, ⑤, ⑥ の 3 次関数のグラフには次の共通点がある。

共通点 —

- y軸との交点のy座標は ソ である。
- y 軸との交点における接線の方程式は $y = \begin{bmatrix} \mathbf{g} \\ \mathbf{g} \end{bmatrix} x + \begin{bmatrix} \mathbf{f} \\ \mathbf{f} \end{bmatrix}$ である。

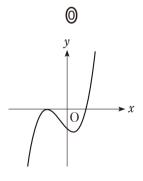
a, b, c, d を 0 でない実数とする。

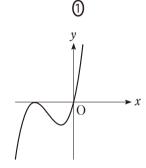
$$dy = \begin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix}$$

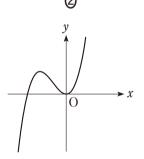
(数学Ⅱ・数学B第2問は次ページに続く。)

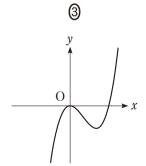
y = f(x)のグラフとy = g(x)のグラフの共有点のx座標は ネ

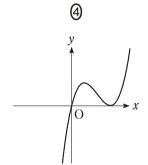
□ナ については、最も適当なものを、次の⑥~⑤のうちから一つ選べ。

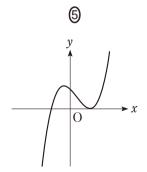












数学Ⅱ・数学B 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 3 問 (選択問題) (配点 20)

以下の問題を解答するにあたっては、必要に応じて 29 ページの正規分布表を 用いてもよい。

Q高校の校長先生は、ある日、新聞で高校生の読書に関する記事を読んだ。そこで、Q高校の生徒全員を対象に、直前の1週間の読書時間に関して、100人の生徒を無作為に抽出して調査を行った。その結果、100人の生徒のうち、この1週間に全く読書をしなかった生徒が36人であり、100人の生徒のこの1週間の読書時間(分)の平均値は204であった。Q高校の生徒全員のこの1週間の読書時間の母平均をm、母標準偏差を150とする。

(1) 全く読書をしなかった生徒の母比率を 0.5 とする。このとき, 100 人の無作 為標本のうちで全く読書をしなかった生徒の数を表す確率変数を X とする と, X は ア に従う。また, X の平均(期待値)は イウ , 標準偏差は てある。

① 正規分布 N(0,1) ① 二項分布 B(0,1)

② 正規分布 N(100, 0.5) **③** 二項分布 B(100, 0.5)

4 正規分布 N(100, 36) **5** 二項分布 B(100, 36)

(数学Ⅱ・数学B第3問は次ページに続く。)

(2) 標本の大きさ 100 は十分に大きいので、100 人のうち全く読書をしなかった 生徒の数は近似的に正規分布に従う。

全く読書をしなかった生徒の母比率を0.5とするとき、全く読書をしなかった生徒が36人以下となる確率を p_5 とおく。 p_5 の近似値を求めると、 $p_5 =$ である。

「オ」については、最も適当なものを、次の◎~⑤のうちから一つ選べ。

() 0.001

0.003

② 0.026

3 0.050

4 0.133

(5) 0.497

カの解答群

 $0 p_4 < p_5$

(1) $p_4 = p_5$

(2) $p_4 > p_5$

(3) 1週間の読書時間の母平均mに対する信頼度95%の信頼区間を $C_1 \le m \le C_2$ とする。標本の大きさ100は十分大きいことと,1週間の読書時間の標本平均が204,母標準偏差が150であることを用いると,

 $C_1 + C_2 =$ **キクケ** , $C_2 - C_1 =$ **コサ** . **シ** であることがわかる。

また、母平均mと C_1 、 C_2 については、 \square

スの解答群

- \bigcirc $C_1 \leq m \leq C_2$ が必ず成り立つ
- ① $m \le C_2$ は必ず成り立つが、 $C_1 \le m$ が成り立つとは限らない
- ② $C_1 \leq m$ は必ず成り立つが、 $m \leq C_2$ が成り立つとは限らない
- ③ $C_1 \leq m$ も $m \leq C_2$ も成り立つとは限らない

(数学Ⅱ・数学B第3問は次ページに続く。)

(4) Q高校の図書委員長も、校長先生と同じ新聞記事を読んだため、校長先生が調査をしていることを知らずに、図書委員会として校長先生と同様の調査を独自に行った。ただし、調査期間は校長先生による調査と同じ直前の1週間であり、対象をQ高校の生徒全員として100人の生徒を無作為に抽出した。その調査における、全く読書をしなかった生徒の数をnとする。

校長先生の調査結果によると全く読書をしなかった生徒は36人であり、

セ。

セの解答群

- ① n は必ず 36 未満である
- ② nは必ず36より大きい
- ③ n と 36 との大小はわからない
- (5) (4) の図書委員会が行った調査結果による母平均mに対する信頼度95%の信頼区間を $D_1 \le m \le D_2$ 、校長先生が行った調査結果による母平均mに対する信頼度95%の信頼区間を(3)の $C_1 \le m \le C_2$ とする。ただし、母集団は同一であり、1 週間の読書時間の母標準偏差は150とする。

このとき、次の0~5のうち、正しいものは ソ と 夕 である。

──ソ , 「タ の解答群(解答の順序は問わない。)

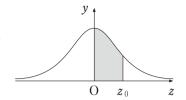
- **0** $C_1 = D_1 \geq C_2 = D_2$ が必ず成り立つ。
- \bigcap $C_1 < D_2$ または $D_1 < C_2$ のどちらか一方のみが必ず成り立つ。
- ② $D_2 < C_1$ または $C_2 < D_1$ となる場合もある。
- ③ $C_2 C_1 > D_2 D_1$ が必ず成り立つ。
- **4** $C_2 C_1 = D_2 D_1$ が必ず成り立つ。
- **⑤** $C_2 C_1 < D_2 D_1$ が必ず成り立つ。

(数学Ⅱ・数学B第3問は次ページに続く。)

-28 - (2605-28)

正規分布表

次の表は、標準正規分布の分布曲線における右図の灰 色部分の面積の値をまとめたものである。



2 0	0.00	0. 01	0. 02	0.03	0. 04	0. 05	0. 06	0. 07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0. 0279	0. 0319	0.0359
0. 1	0. 0398	0. 0438	0. 0478	0. 0517	0. 0557	0. 0596	0. 0636	0. 0675	0. 0714	0. 0753
0. 2	0. 0793	0. 0832	0. 0871	0. 0910	0. 0948	0. 0987	0. 1026	0. 1064	0. 1103	0. 1141
0. 3	0. 1179	0. 1217	0. 1255	0. 1293	0. 1331	0. 1368	0. 1406	0. 1443	0. 1480	0. 1517
0. 4	0. 1554	0. 1591	0. 1628	0. 1664	0. 1700	0. 1736	0. 1772	0. 1808	0. 1844	0. 1879
0. 5	0. 1915	0. 1950	0. 1985	0. 2019	0. 2054	0. 2088	0. 2123	0. 2157	0. 2190	0. 2224
0. 6	0. 2257	0. 2291	0. 2324	0. 2357	0. 2389	0. 2422	0. 2454	0. 2486	0. 2517	0. 2549
0. 7	0. 2580	0. 2611	0. 2642	0. 2673	0. 2704	0. 2734	0. 2764	0. 2794	0. 2823	0. 2852
0. 8	0. 2881	0. 2910	0. 2939	0. 2967	0. 2995	0. 3023	0. 3051	0. 3078	0. 3106	0. 3133
0. 9	0. 3159	0. 3186	0. 3212	0. 3238	0. 3264	0. 3289	0. 3315	0. 3340	0. 3365	0. 3389
1. 0	0. 3413	0. 3438	0. 3461	0. 3485	0. 3508	0. 3531	0. 3554	0. 3577	0. 3599	0. 3621
1. 1	0. 3643	0. 3665	0. 3686	0. 3708	0. 3729	0. 3749	0. 3770	0. 3790	0. 3810	0. 3830
1. 2	0. 3849	0. 3869	0. 3888	0. 3907	0. 3925	0. 3944	0. 3962	0. 3980	0. 3997	0. 4015
1. 3	0. 4032	0. 4049	0. 4066	0. 4082	0. 4099	0. 4115	0. 4131	0. 4147	0. 4162	0. 4177
1. 4	0. 4192	0. 4207	0. 4222	0. 4236	0. 4251	0. 4265	0. 4279	0. 4292	0. 4306	0. 4319
1. 5	0. 4332	0. 4345	0. 4357	0. 4370	0. 4382	0. 4394	0. 4406	0. 4418	0. 4429	0. 4441
1. 6	0. 4452	0. 4463	0. 4474	0. 4484	0. 4495	0. 4505	0. 4515	0. 4525	0. 4535	0. 4545
1. 7	0. 4554	0. 4564	0. 4573	0. 4582	0. 4591	0. 4599	0. 4608	0. 4616	0. 4625	0. 4633
1. 8	0. 4641	0. 4649	0. 4656	0. 4664	0. 4671	0. 4678	0. 4686	0. 4693	0. 4699	0. 4706
1. 9	0. 4713	0. 4719	0. 4726	0. 4732	0. 4738	0. 4744	0. 4750	0. 4756	0. 4761	0. 4767
2. 0	0. 4772	0. 4778	0. 4783	0. 4788	0. 4793	0. 4798	0. 4803	0. 4808	0. 4812	0. 4817
2. 1	0. 4821	0. 4826	0. 4830	0. 4834	0. 4838	0. 4842	0. 4846	0. 4850	0. 4854	0. 4857
2. 2	0. 4861	0. 4864	0. 4868	0. 4871	0. 4875	0. 4878	0. 4881	0. 4884	0. 4887	0. 4890
2. 3	0. 4893	0. 4896	0. 4898	0. 4901	0. 4904	0. 4906	0. 4909	0. 4911	0. 4913	0. 4916
2. 4	0. 4918	0. 4920	0. 4922	0. 4925	0. 4927	0. 4929	0. 4931	0. 4932	0. 4934	0. 4936
2. 5	0. 4938	0. 4940	0. 4941	0. 4943	0. 4945	0. 4946	0. 4948	0. 4949	0. 4951	0. 4952
2. 6	0. 4953	0. 4955	0. 4956	0. 4957	0. 4959	0. 4960	0. 4961	0. 4962	0. 4963	0. 4964
2. 7	0. 4965	0. 4966	0. 4967	0. 4968	0. 4969	0. 4970	0. 4971	0. 4972	0. 4973	0. 4974
2. 8	0. 4974	0. 4975	0. 4976	0. 4977	0. 4977	0. 4978	0. 4979	0. 4979	0. 4980	0. 4981
2. 9	0. 4981	0. 4982	0. 4982	0. 4983	0. 4984	0. 4984	0. 4985	0. 4985	0. 4986	0. 4986
3. 0	0. 4987	0. 4987	0. 4987	0. 4988	0. 4988	0. 4989	0. 4989	0. 4989	0. 4990	0. 4990

数学 II・数学 B 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 4 問 (選択問題) (配点 20)

初項3、公差pの等差数列を $\{a_n\}$ とし、初項3、公比rの等比数列を $\{b_n\}$ とする。ただし、 $p \neq 0$ かつ $r \neq 0$ とする。さらに、これらの数列が次を満たすとする。

$$a_n b_{n+1} - 2 a_{n+1} b_n + 3 b_{n+1} = 0$$
 $(n = 1, 2, 3, \dots)$ (1)

(1) $p \ge r$ の値を求めよう。自然数 n について、 a_n 、 a_{n+1} 、 b_n はそれぞれ

$$a_n = \boxed{7} + (n-1)p \qquad \cdots$$

$$b_n = \boxed{ 1 } r^{n-1}$$

と表される。 $r \neq 0$ により、すべての自然数nについて、 $b_n \neq 0$ となる。

 $\frac{b_{n+1}}{b_n} = r$ であることから、① の両辺を b_n で割ることにより

$$a_{n+1} = r(a_n + \Box)$$
④

が成り立つことがわかる。④に②と③を代入すると

$$(r- \boxed{1})pn = r(p- \boxed{1}) + \boxed{1}$$
 $\boxed{5}$

となる。⑤がすべてのnで成り立つことおよび $p \neq 0$ により、 $r = \boxed$ オ

を得る。さらに、このことから、 $p = \boxed{ \boldsymbol{\mathcal{D}} }$ を得る。

以上から、すべての自然数nについて、 $a_n \ge b_n$ が正であることもわかる。

(数学Ⅱ・数学B第4問は次ページに続く。)

(2) $p = \boxed{ }$ カー、 $r = \boxed{ }$ であることから、 $\{a_n\}$ 、 $\{b_n\}$ の初項から第n項までの和は、それぞれ次の式で与えられる。

$$\sum_{k=1}^{n} a_{k} = \frac{\cancel{\tau}}{\boxed{\ \ }} n \Big(n + \boxed{\ \ } \Big)$$

$$\sum_{k=1}^{n} b_{k} = \boxed{\ \ } \Big(\boxed{\ \ } \boxed{$$

(3) 数列 $\{a_n\}$ に対して、初項3の数列 $\{c_n\}$ が次を満たすとする。

$$a_n c_{n+1} - 4 a_{n+1} c_n + 3 c_{n+1} = 0$$
 $(n = 1, 2, 3, \cdots)$ 6

さらに、 $p = \begin{bmatrix} D \end{bmatrix}$ であることから、数列 $\{c_n\}$ は $\begin{bmatrix} \mathbf{9} \end{bmatrix}$ ことがわかる。

タの解答群

- ◎ すべての項が同じ値をとる数列である
- ① 公差が0でない等差数列である
- ② 公比が1より大きい等比数列である
- ③ 公比が1より小さい等比数列である
- ④ 等差数列でも等比数列でもない
- (4) q, u は定数で, $q \neq 0$ とする。数列 $\{b_n\}$ に対して、初項3 の数列 $\{d_n\}$ が次を満たすとする。

$$d_n b_{n+1} - q d_{n+1} b_n + u b_{n+1} = 0$$
 $(n = 1, 2, 3, \cdots)$ \bigcirc

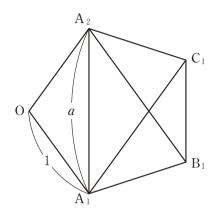
を得る。したがって、数列 $\{d_n\}$ が、公比が0より大きく1より小さい等比数列となるための必要十分条件は、q> v かつu= r である。

数学 **II** ・数学 **B** 第 3 問 ~ 第 5 問は、いずれか 2 問を選択し、解答しなさい。

第5間 (選択問題) (配点 20)

1辺の長さが1の正五角形の対角線の長さを a とする。

(1) 1 辺の長さが1の正五角形 OA₁B₁C₁A₂ を考える。



 $\angle A_1C_1B_1 =$ **アイ** $^{\circ}$, $\angle C_1A_1A_2 =$ $^{\circ}$ アイ $^{\circ}$ となることから, $\overrightarrow{A_1A_2}$ と $\overrightarrow{B_1C_1}$ は平行である。ゆえに

$$\overrightarrow{A_1}\overrightarrow{A_2} = \boxed{ \ \ } \overrightarrow{D_1}\overrightarrow{B_1}\overrightarrow{C_1}$$

であるから

$$\overrightarrow{B_1C_1} = \frac{1}{\overrightarrow{D}} \overrightarrow{A_1A_2} = \frac{1}{\overrightarrow{D}} \left(\overrightarrow{OA_2} - \overrightarrow{OA_1} \right)$$

また, $\overrightarrow{OA_1}$ と $\overrightarrow{A_2B_1}$ は平行で, さらに, $\overrightarrow{OA_2}$ と $\overrightarrow{A_1C_1}$ も平行であることから

$$\overrightarrow{B_1C_1} = \overrightarrow{B_1A_2} + \overrightarrow{A_2O} + \overrightarrow{OA_1} + \overrightarrow{A_1C_1}$$

$$= - \boxed{\overrightarrow{D}} \overrightarrow{OA_1} - \overrightarrow{OA_2} + \overrightarrow{OA_1} + \boxed{\overrightarrow{D}} \overrightarrow{OA_2}$$

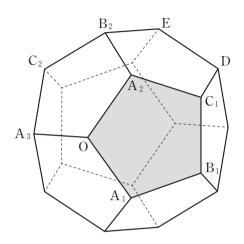
$$= \left(\boxed{\mathbf{I}} - \boxed{\mathbf{J}} \right) \left(\overrightarrow{OA_2} - \overrightarrow{OA_1} \right)$$

となる。したがって

が成り立つ。a > 0 に注意してこれを解くと, $a = \frac{1 + \sqrt{5}}{2}$ を得る。

(数学Ⅱ・数学B第5問は次ページに続く。)

(2) 下の図のような、1辺の長さが1の正十二面体を考える。正十二面体とは、 どの面もすべて合同な正五角形であり、どの頂点にも三つの面が集まっている へこみのない多面体のことである。



面 $OA_1B_1C_1A_2$ に着目する。 $\overrightarrow{OA_1}$ と $\overrightarrow{A_2B_1}$ が平行であることから $\overrightarrow{OB_1} = \overrightarrow{OA_2} + \overrightarrow{A_2B_1} = \overrightarrow{OA_2} + \boxed{$

である。また

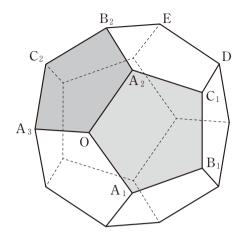
$$\left|\overrightarrow{OA}_{2} - \overrightarrow{OA}_{1}\right|^{2} = \left|\overrightarrow{A}_{1}\overrightarrow{A}_{2}\right|^{2} = \frac{\cancel{\cancel{D}} + \sqrt{\cancel{\ddagger}}}{\cancel{\cancel{D}}}$$

に注意すると

$$\overrightarrow{\mathrm{OA}_1} \cdot \overrightarrow{\mathrm{OA}_2} = \frac{\overleftarrow{\tau} - \sqrt{\Box}}{\overleftarrow{\tau}}$$

を得る。

(数学Ⅱ・数学B第5問は次ページに続く。)



次に、面 OA₂B₂C₂A₃ に着目すると

$$\overrightarrow{OB_2} = \overrightarrow{OA_3} + \overrightarrow{DOA_2}$$

である。さらに

$$\overrightarrow{OA_2} \cdot \overrightarrow{OA_3} = \overrightarrow{OA_3} \cdot \overrightarrow{OA_1} = \frac{\cancel{\mathcal{T}} - \sqrt{\square}}{\cancel{\forall}}$$

が成り立つことがわかる。ゆえに

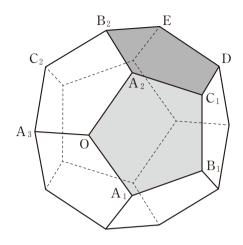
$$\overrightarrow{OA_1} \cdot \overrightarrow{OB_2} = \boxed{\triangleright}$$
, $\overrightarrow{OB_1} \cdot \overrightarrow{OB_2} = \boxed{\triangleright}$

である。

シー, スーの解答群(同じものを繰り返し選んでもよい。)

- $\bigcirc 0 \quad 0 \quad 0 \quad 1 \quad \bigcirc 0 \quad 1 \quad \bigcirc 0 \quad 1$
- **4** $\frac{1-\sqrt{5}}{2}$ **5** $\frac{-1+\sqrt{5}}{2}$ **6** $\frac{-1-\sqrt{5}}{2}$ **7** $-\frac{1}{2}$

(数学Ⅱ・数学B第5問は次ページに続く。)



最後に、面 $A_2C_1DEB_2$ に着目する。

$$\overrightarrow{B_2D} = \overrightarrow{D} \overrightarrow{A_2C_1} = \overrightarrow{OB_1}$$

であることに注意すると、4点O, B_1 , D, B_2 は同一平面上にあり、四角形 OB_1DB_2 は ことがわかる。

セの解答群

- 正方形である
- ① 正方形ではないが、長方形である
- ② 正方形ではないが、ひし形である
- ③ 長方形でもひし形でもないが、平行四辺形である
- 4 平行四辺形ではないが、台形である
- 6 台形でない

ただし、少なくとも一組の対辺が平行な四角形を台形という。