問題	選択方法						
第1問	必答						
第2問	必答						
第3問							
第 4 問	いずれか2問を選択し, 						
第5問							

数学 II ・数学 B (注) この科目には、選択問題があります。(19ページ参照。)

第 1 問 (必答問題) (配点 30)

(1)

(1) $\log_{10} 10 =$ ア である。また、 $\log_{10} 5$ 、 $\log_{10} 15$ をそれぞれ $\log_{10} 2$ と $\log_{10} 3$ を用いて表すと

$$\log_{10} 15 = \boxed{ }$$
 $\log_{10} 2 + \log_{10} 3 + \boxed{ }$

となる。

(数学Ⅱ・数学B第1問は次ページに続く。)

(2) 太郎さんと花子さんは、15²⁰ について話している。以下では、log₁₀ 2 = 0.3010、log₁₀ 3 = 0.4771 とする。

太郎:1520は何桁の数だろう。

花子:15の20乗を求めるのは大変だね。log1015²⁰の整数部分に着目

してみようよ。

 $\log_{10} 15^{20} \ \text{k}$

を満たす。よって、15²⁰ は **クケ** 桁の数である。

太郎: 15^{20} の最高位の数字も知りたいね。だけど、 $\log_{10} 15^{20}$ の整数 部分にだけ着目してもわからないな。

花子: $N \cdot 10$ カキ $< 15^{20} < (N+1) \cdot 10$ カキ を満たすような正 の整数 N に着目してみたらどうかな。

$$\log_{10}15^{20}$$
 の小数部分は $\log_{10}15^{20}$ - カキ であり

が成り立つので、 15^{20} の最高位の数字は サ である。

(数学Ⅱ・数学B第1問は次ページに続く。)

数学Ⅱ・数学B

[2] 座標平面上の原点を中心とする半径1の円周上に3点 $P(\cos \theta, \sin \theta)$, とする。このとき、 $s \ge t$ を次のように定める。

$$s = \cos \theta + \cos \alpha + \cos \beta$$
, $t = \sin \theta + \sin \alpha + \sin \beta$

(1) $\triangle PQR$ が正三角形や二等辺三角形のときの $s \ge t$ の値について考察しよ う。

△PQR が正三角形である場合を考える。

この場合、 α 、 β を θ で表すと

$$\alpha = \theta + \frac{2}{3}\pi, \ \beta = \theta + \frac{2}{3}\pi$$

であり、加法定理により

$$\cos \alpha = \boxed{2}$$
, $\sin \alpha = \boxed{2}$

である。同様に、 $\cos \beta$ および $\sin \beta$ を、 $\sin \theta$ と $\cos \theta$ を用いて表すこと ができる。

これらのことから、
$$s = t = \boxed{9}$$
 である。

ソ の解答群(同じものを繰り返し選んでもよい。)

$$\bigcirc \frac{1}{2}\sin\theta + \frac{\sqrt{3}}{2}\cos\theta$$

$$\bigcirc \frac{\sqrt{3}}{2}\sin\theta + \frac{1}{2}\cos\theta$$

(数学 II ・数学B第1問は次ページに続く。)

考察 2

 \triangle PQR が PQ = PR となる二等辺三角形である場合を考える。

例えば、点 P が直線 y=x 上にあり、点 Q、R が直線 y=x に関して対称 で ある と き を 考 える。この と き、 $\theta=\frac{\pi}{4}$ で ある。ま た、 α は $\alpha<\frac{5}{4}\pi$ 、 β は $\frac{5}{4}\pi<\beta$ を 満 た し、点 Q、R の 座 標 に つ い て、 $\sin\beta=\cos\alpha$ 、 $\cos\beta=\sin\alpha$ が成り立つ。よって

$$s = t = \frac{\sqrt{\mathcal{F}}}{\boxed{y}} + \sin \alpha + \cos \alpha$$

である。

ここで, 三角関数の合成により

$$\sin \alpha + \cos \alpha = \sqrt{\boxed{\overline{\tau}}} \sin \left(\alpha + \frac{\pi}{\boxed{\ }} \right)$$

である。したがって

$$\alpha = \frac{\boxed{ + \pm }}{12} \pi, \ \beta = \frac{\boxed{ 3 \mathring{\lambda}}}{12} \pi$$

のとき、s = t = 0 である。

(数学Ⅱ・数学B第1問は次ページに続く。)

(2) 次に, $s \ge t$ の値を定めたときの θ , α , β の関係について考察しよう。

- 考察 3

s = t = 0 の場合を考える。

この場合, $\sin^2\theta + \cos^2\theta = 1$ により, α と β について考えると

$$\cos \alpha \cos \beta + \sin \alpha \sin \beta = \frac{\boxed{J / N}}{\boxed{E}}$$

である。

同様に、 θ と α について考えると

であるから、 θ 、 α 、 β の範囲に注意すると

$$\beta - \alpha = \alpha - \theta = \frac{\boxed{7}}{\boxed{\ }}\pi$$

という関係が得られる。

(数学Ⅱ・数学B第1問は次ページに続く。)

(3) これまでの考察を振り返ると、次の**②**~**③**のうち、正しいものは **ホ** であることがわかる。

ホの解答群

- **②** \triangle PQR が正三角形ならば s=t=0 であり、s=t=0 ならば \triangle PQR は正三角形である。
- ① $\triangle PQR$ が正三角形ならば s=t=0 であるが、s=t=0 であっても $\triangle PQR$ が正三角形でない場合がある。
- ② $\triangle PQR$ が正三角形であっても s=t=0 でない場合があるが、 s=t=0 ならば $\triangle PQR$ は正三角形である。
- ③ $\triangle PQR$ が正三角形であっても s=t=0 でない場合があり、 s=t=0 であっても $\triangle PQR$ が正三角形でない場合がある。

第2問 (必答問題) (配点 30)

- 〔1〕 a を実数とし、f(x) = (x-a)(x-2)とおく。また、 $F(x) = \int_0^x f(t) dt$ とする。
 - (1) a=1 のとき、F(x) はx= ア で極小になる。
 - (2) a= **イ** のとき、F(x)はつねに増加する。また、F(0)= ウ であるから、a= イ のとき、F(2)の値は **エ** である。

エの解答群

0 0 1 正 2 負	
----------------------------------	--

(数学Ⅱ・数学B第2問は次ページに続く。)

(3) a > イ とする。 b を実数とし, $G(x) = \int_{b}^{x} f(t) dt$ とおく。

関数y = G(x)のグラフは、y = F(x)のグラフを オカ 方向に カ だけ平行移動したものと一致する。また,G(x)はx= キ で極大になり, $x = \boxed{\mathbf{p}}$ で極小になる。

x 軸との共有点の個数は \Box 個である。

の解答群

0 x 軸

① y 軸

の解答群

() b

- (1) -b
- (2) F(b)

- $\mathbf{\mathfrak{G}} F(b)$
- **(4)** F(-b) **(5)** -F(-b)

(数学Ⅱ・数学B第2問は次ページに続く。)

[2] g(x) = |x|(x+1) とおく。

点 P(-1, 0) を通り,傾きが c の直線を ℓ とする。g'(-1) = サ であるから,0 < c < サ のとき,曲線 y = g(x) と直線 ℓ は 3 点で交わる。そのうちの 1 点は P であり,残りの 2 点を点 P に近い方から順に Q,R と す る と,点 Q の x 座 標 は D である。

また、0 < c < サ のとき、線分 PQ と曲線 y = g(x) で囲まれた図形の面積を S とし、線分 QR と曲線 y = g(x) で囲まれた図形の面積を T とすると

$$S = \frac{y c^3 + \cancel{9} c^2 - \cancel{F} c + 1}{y}$$

$$T = c \overline{\cancel{F}}$$

である。

数学 II・数学 B 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 3 問 (選択問題) (配点 20)

以下の問題を解答するにあたっては、必要に応じて 33 ページの正規分布表を 用いてもよい。

ある大学には、多くの留学生が在籍している。この大学の留学生に対して学習 や生活を支援する留学生センターでは、留学生の日本語の学習状況について関心 を寄せている。

(1) この大学では、留学生に対する授業として、以下に示す三つの日本語学習 コースがある。

初級コース:1週間に10時間の日本語の授業を行う

中級コース:1週間に8時間の日本語の授業を行う

上級コース:1週間に6時間の日本語の授業を行う

すべての留学生が三つのコースのうち、いずれか一つのコースのみに登録することになっている。留学生全体における各コースに登録した留学生の割合は、それぞれ

初級コース: 20%, 中級コース: 35%, 上級コース: **アイ**% であった。ただし、数値はすべて正確な値であり、四捨五入されていないものとする。

この留学生の集団において、一人を無作為に抽出したとき、その留学生が1 週間に受講する日本語学習コースの授業の時間数を表す確率変数をXとす

る。Xの平均(期待値)は $\frac{$ ウエ $}{2}$ であり、Xの分散は $\frac{$ オカ $}{20}$ である。

(数学Ⅱ・数学B第3問は次ページに続く。)

次に、留学生全体を母集団とし、a人を無作為に抽出したとき、初級コースに登録した人数を表す確率変数をYとすると、Yは二項分布に従う。このとき、Yの平均E(Y)は

である。

また、上級コースに登録した人数を表す確率変数をZとすると、Zは二項分布に従う。Y、Zの標準偏差をそれぞれ $\sigma(Y)$ 、 $\sigma(Z)$ とすると

$$\frac{\sigma(Z)}{\sigma(Y)} = \frac{\boxed{\tau} \sqrt{\exists \, \forall}}{\boxed{\flat}}$$

である。

ここで、a=100 としたとき、無作為に抽出された留学生のうち、初級コースに登録した留学生が 28 人以上となる確率を p とする。a=100 は十分大きいので、Y は近似的に正規分布に従う。このことを用いて p の近似値を求めると、p= スプである。

ス については、最も適当なものを、次の〇~⑤のうちから一つ選べ。

0 0.002	① 0.023	② 0.228
3 0.477	4 0.480	⑤ 0.977

(数学Ⅱ・数学B第3問は次ページに続く。)

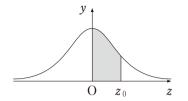
(2) 40人の留学生を無作為に抽出し、ある1週間における留学生の日本語学習 コース以外の日本語の学習時間(分)を調査した。ただし、日本語の学習時間は 母平均m、母分散 σ^2 の分布に従うものとする。

母分散 σ^2 を 640 と仮定すると、標本平均の標準偏差は セ となる。調査の結果、40 人の学習時間の平均値は 120 であった。標本平均が近似的に正規分布に従うとして、母平均 m に対する信頼度 95 % の信頼区間を $C_1 \le m \le C_2$ とすると

(3) (2) の調査とは別に、日本語の学習時間を再度調査することになった。そこで、50人の留学生を無作為に抽出し、調査した結果、学習時間の平均値は120であった。

母分散 σ^2 を 640 と仮定したとき、母平均 m に対する信頼度 95 % の信頼区間を $D_1 \le m \le D_2$ とすると、
「ノ が成り立つ。

一方、母分散 σ^2 を 960 と仮定したとき、母平均 m に対する信頼度 95 % の信頼区間を $E_1 \le m \le E_2$ とする。このとき、 $D_2 - D_1 = E_2 - E_1$ となるためには、標本の大きさを 50 の n . n 倍にする必要がある。


_____の解答群

- \bigcirc $D_1 < C_1 かつ D_2 < C_2$
- ② $D_1 > C_1 \text{ thom } D_2 < C_2$
- ③ $D_1 > C_1$ かつ $D_2 > C_2$

(数学Ⅱ・数学B第3問は次ページに続く。)

正規分布表

次の表は、標準正規分布の分布曲線における右図の灰 色部分の面積の値をまとめたものである。

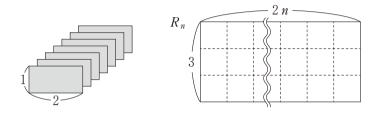
2 0	0.00	0. 01	0. 02	0. 03	0. 04	0. 05	0. 06	0. 07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0. 0279	0. 0319	0.0359
0. 1	0. 0398	0. 0438	0. 0478	0. 0517	0. 0557	0. 0596	0. 0636	0. 0675	0. 0714	0. 0753
0. 2	0. 0793	0. 0832	0. 0871	0. 0910	0. 0948	0. 0987	0. 1026	0. 1064	0. 1103	0. 1141
0. 3	0. 1179	0. 1217	0. 1255	0. 1293	0. 1331	0. 1368	0. 1406	0. 1443	0. 1480	0. 1517
0. 4	0. 1554	0. 1591	0. 1628	0. 1664	0. 1700	0. 1736	0. 1772	0. 1808	0. 1844	0. 1879
0. 5	0. 1915	0. 1950	0. 1985	0. 2019	0. 2054	0. 2088	0. 2123	0. 2157	0. 2190	0. 2224
0. 6	0. 2257	0. 2291	0. 2324	0. 2357	0. 2389	0. 2422	0. 2454	0. 2486	0. 2517	0. 2549
0. 7	0. 2580	0. 2611	0. 2642	0. 2673	0. 2704	0. 2734	0. 2764	0. 2794	0. 2823	0. 2852
0. 8	0. 2881	0. 2910	0. 2939	0. 2967	0. 2995	0. 3023	0. 3051	0. 3078	0. 3106	0. 3133
0. 9	0. 3159	0. 3186	0. 3212	0. 3238	0. 3264	0. 3289	0. 3315	0. 3340	0. 3365	0. 3389
1. 0	0. 3413	0. 3438	0. 3461	0. 3485	0. 3508	0. 3531	0. 3554	0. 3577	0. 3599	0. 3621
1. 1	0. 3643	0. 3665	0. 3686	0. 3708	0. 3729	0. 3749	0. 3770	0. 3790	0. 3810	0. 3830
1. 2	0. 3849	0. 3869	0. 3888	0. 3907	0. 3925	0. 3944	0. 3962	0. 3980	0. 3997	0. 4015
1. 3	0. 4032	0. 4049	0. 4066	0. 4082	0. 4099	0. 4115	0. 4131	0. 4147	0. 4162	0. 4177
1. 4	0. 4192	0. 4207	0. 4222	0. 4236	0. 4251	0. 4265	0. 4279	0. 4292	0. 4306	0. 4319
1. 5	0. 4332	0. 4345	0. 4357	0. 4370	0. 4382	0. 4394	0. 4406	0. 4418	0. 4429	0. 4441
1. 6	0. 4452	0. 4463	0. 4474	0. 4484	0. 4495	0. 4505	0. 4515	0. 4525	0. 4535	0. 4545
1. 7	0. 4554	0. 4564	0. 4573	0. 4582	0. 4591	0. 4599	0. 4608	0. 4616	0. 4625	0. 4633
1. 8	0. 4641	0. 4649	0. 4656	0. 4664	0. 4671	0. 4678	0. 4686	0. 4693	0. 4699	0. 4706
1. 9	0. 4713	0. 4719	0. 4726	0. 4732	0. 4738	0. 4744	0. 4750	0. 4756	0. 4761	0. 4767
2. 0	0. 4772	0. 4778	0. 4783	0. 4788	0. 4793	0. 4798	0. 4803	0. 4808	0. 4812	0. 4817
2. 1	0. 4821	0. 4826	0. 4830	0. 4834	0. 4838	0. 4842	0. 4846	0. 4850	0. 4854	0. 4857
2. 2	0. 4861	0. 4864	0. 4868	0. 4871	0. 4875	0. 4878	0. 4881	0. 4884	0. 4887	0. 4890
2. 3	0. 4893	0. 4896	0. 4898	0. 4901	0. 4904	0. 4906	0. 4909	0. 4911	0. 4913	0. 4916
2. 4	0. 4918	0. 4920	0. 4922	0. 4925	0. 4927	0. 4929	0. 4931	0. 4932	0. 4934	0. 4936
2. 5	0. 4938	0. 4940	0. 4941	0. 4943	0. 4945	0. 4946	0. 4948	0. 4949	0. 4951	0. 4952
2. 6	0. 4953	0. 4955	0. 4956	0. 4957	0. 4959	0. 4960	0. 4961	0. 4962	0. 4963	0. 4964
2. 7	0. 4965	0. 4966	0. 4967	0. 4968	0. 4969	0. 4970	0. 4971	0. 4972	0. 4973	0. 4974
2. 8	0. 4974	0. 4975	0. 4976	0. 4977	0. 4977	0. 4978	0. 4979	0. 4979	0. 4980	0. 4981
2. 9	0. 4981	0. 4982	0. 4982	0. 4983	0. 4984	0. 4984	0. 4985	0. 4985	0. 4986	0. 4986
3. 0	0. 4987	0. 4987	0. 4987	0. 4988	0. 4988	0. 4989	0. 4989	0. 4989	0. 4990	0. 4990

数学Ⅱ・数学B 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 4 問 (選択問題) (配点 20)

$$a_n = \boxed{ }$$
 \cdot $\boxed{ }$ \bigcirc $^{n-1}$

である。この式はn=1のときにも成り立つ。

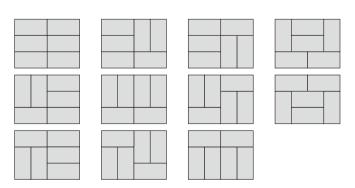

上で求めたことから、すべての自然数 n に対して

が成り立つことがわかる。

(数学Ⅱ・数学B第4問は次ページに続く。)

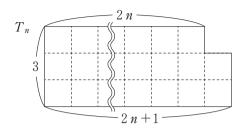
[2] 太郎さんは和室の畳を見て、畳の敷き方が何通りあるかに興味を持った。 ちょうど手元にタイルがあったので、畳をタイルに置き換えて、数学的に考 えることにした。

縦の長さが1,横の長さが2の長方形のタイルが多数ある。それらを縦か横の向きに、隙間も重なりもなく敷き詰めるとき、その敷き詰め方をタイルの「配置」と呼ぶ。

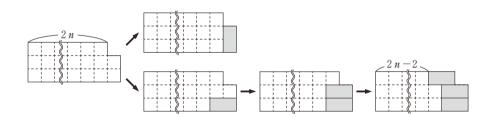


上の図のように、縦の長さが3、横の長さが2nの長方形を R_n とする。 3n 枚のタイルを用いた R_n 内の配置の総数を r_n とする。

n=1 のときは、下の図のように $r_1=3$ である。



また, n=2 のときは, 下の図のように $r_2=11$ である。

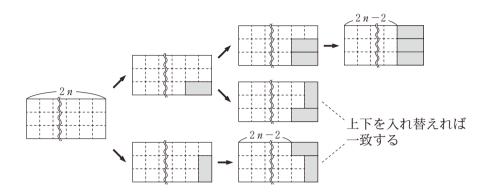


(数学Ⅱ・数学B第4問は次ページに続く。)

(1) 太郎さんは次のような図形 Tn内の配置を考えた。

さらに、太郎さんは T_n 内の配置について、右下隅のタイルに注目して次のような図をかいて考えた。

この図から、2以上の自然数nに対して


$$t_n = Ar_n + Bt_{n-1}$$

が成り立つことがわかる。ただし、 $A = \begin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix}$ 、 $B = \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix}$ である。

以上から, $t_2 = |$ サシ | であることがわかる。

(数学Ⅱ・数学B第4問は次ページに続く。)

同様に、 R_n の右下隅のタイルに注目して次のような図をかいて考えた。

この図から、2以上の自然数 n に対して

$$r_n = Cr_{n-1} + Dt_{n-1}$$

が成り立つことがわかる。ただし、 $C = \begin{bmatrix} \mathbf{Z} \\ \mathbf{Z} \end{bmatrix}$ 、 $D = \begin{bmatrix} \mathbf{t} \\ \mathbf{v} \end{bmatrix}$ である。

(2) 畳を縦の長さが1, 横の長さが2の長方形とみなす。縦の長さが3, 横の長さが6の長方形の部屋に畳を敷き詰めるとき, 敷き詰め方の総数は ソタ である。

また、縦の長さが3、横の長さが8の長方形の部屋に畳を敷き詰めるとき、敷き詰め方の総数は **チッテ** である。

数学Ⅱ・数学B 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 5 問 (選択問題) (配点 20)

O を原点とする座標空間に 2 点 A(-1,2,0), B(2,p,q)がある。ただし、q>0 とする。線分 AB の中点 C から直線 OA に引いた垂線と直線 OA の交点 D は、線分 OA を 9:1 に内分するものとする。また、点 C から直線 OB に引いた垂線と直線 OB の交点 E は、線分 OB を 3:2 に内分するものとする。

(1) 点 B の座標を求めよう。

$$\left|\overrightarrow{\mathrm{OA}}\right|^2 = \boxed{7}$$
 である。また, $\overrightarrow{\mathrm{OD}} = \boxed{1}$ $\overrightarrow{\mathrm{OA}}$ であることにより,

である。同様に, \overrightarrow{CE} を \overrightarrow{OA} , \overrightarrow{OB} を用いて表すと, \overrightarrow{OB} \bot \overrightarrow{CE} から

を得る。

(数学Ⅱ・数学B第5問は次ページに続く。)

(2) 3 点 O, A, Bの定める平面を α とし、点 $(4,4,-\sqrt{7})$ をGとする。また、 α 上に点 H を $\overrightarrow{GH} \perp \overrightarrow{OA}$ と $\overrightarrow{GH} \perp \overrightarrow{OB}$ が成り立つようにとる。 \overrightarrow{OH} を \overrightarrow{OA} , \overrightarrow{OB} を用いて表そう。

H が α 上にあることから、実数 s, t を用いて

$$\overrightarrow{OH} = s \overrightarrow{OA} + t \overrightarrow{OB}$$

と表される。よって

$$\overrightarrow{\mathrm{GH}} = \boxed{\triangleright} \overrightarrow{\mathrm{OG}} + s \overrightarrow{\mathrm{OA}} + t \overrightarrow{\mathrm{OB}}$$

である。これと、 $\overrightarrow{GH} \perp \overrightarrow{OA}$ および $\overrightarrow{GH} \perp \overrightarrow{OB}$ が成り立つことから、

となる。また、このことから、H は **ツ**であることがわかる。

ツの解答群

- ◎ 三角形 OAC の内部の点
- ① 三角形 OBC の内部の点
- ② 点 O, C と異なる,線分 OC 上の点
- ③ 三角形 OAB の周上の点
- ④ 三角形 OAB の内部にも周上にもない点