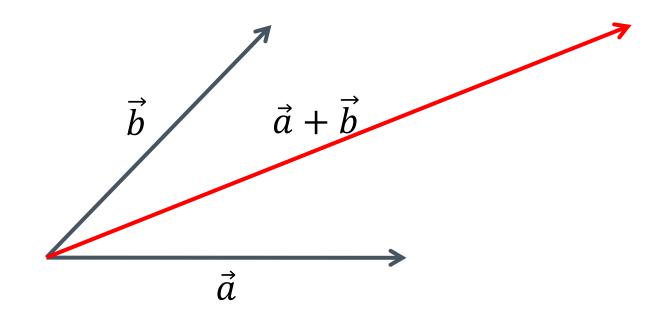
ベクトルの演算

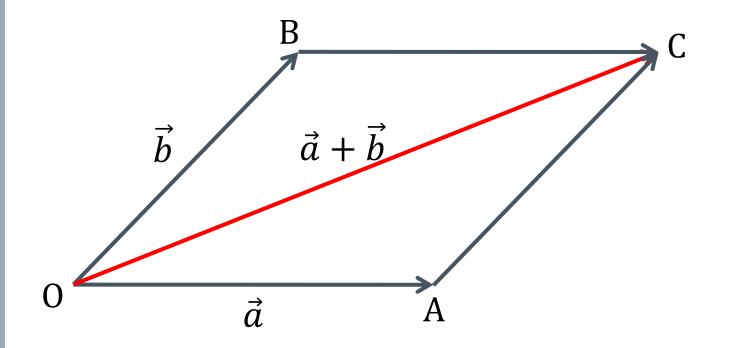
ベクトルの加法と減法

ベクトルの加法 $\vec{a} + \vec{b}$



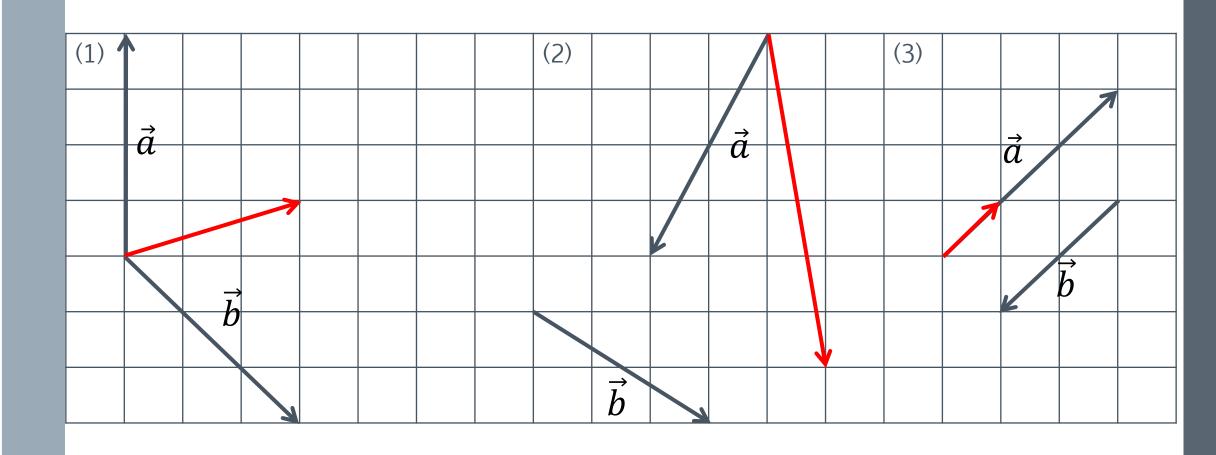
- ① 1番目のベクトルの終点に2番目のベクトルの始点を移動する。
- ② 1番目のベクトルの始点と2番目のベクトルの終点を結んだベクトルが和のベクトルになる。

ベクトルの加法 $\vec{a} + \vec{b}$



- ① \vec{a} と \vec{b} の始点を重ね点 O とし、それぞれの終点を A, B とする。 点 C を四角形 OACB が平行四辺形になるようにとる。
- ② $\overrightarrow{OC} = \vec{a} + \vec{b}$ が成り立つ。

問2の解答



ベクトルの加法

$$\Rightarrow$$
 交換法則 $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

$$\rightarrow$$
 結合法則 $\left(\vec{a} + \vec{b}\right) + \vec{c} = \vec{a} + \left(\vec{b} + \vec{c}\right)$

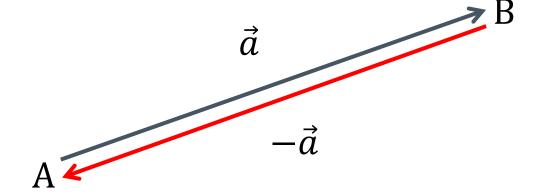
逆ベクトルと零ベクトル

> ベクトルと逆ベクトルの和は零ベクトル

$$\vec{a} + (-\vec{a}) = \vec{0}$$

 \Rightarrow 零ベクトルの大きさは 0 で、向きは考えない。 $\vec{a} + \vec{0} = \vec{a}$

逆ベクトル



$$\overrightarrow{BA} = -\overrightarrow{AB}$$

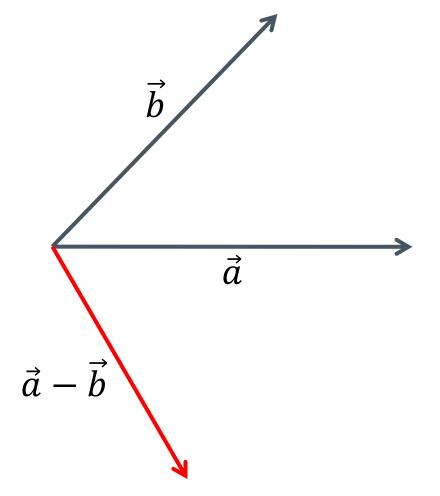
ベクトルの加法

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \left(\overrightarrow{AB} + \overrightarrow{BC}\right) + \overrightarrow{CA} = \overrightarrow{AC} + \overrightarrow{CA} = \overrightarrow{AA} = \overrightarrow{0}$$

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$$

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{AC} + \overrightarrow{CA} = \overrightarrow{AA} = \overrightarrow{0}$$

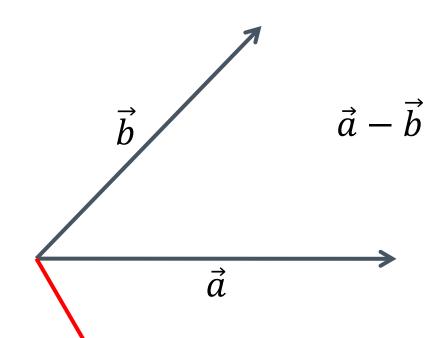
ベクトルの減法 $\vec{a} - \vec{b}$



 2番目のベクトルの向きを逆にし、1番目のベクトルの終点に2番目のベクトルの 始点を移動する。

② 1番目のベクトルの始点と2番目のベクトルの終点を結んだ ベクトルが差のベクトルになる。

ベクトルの減法 $\vec{a} - \vec{b}$



$$\vec{a} - \vec{b}$$
 のいろいろなかき方

1.
$$\vec{a} - \vec{b}$$

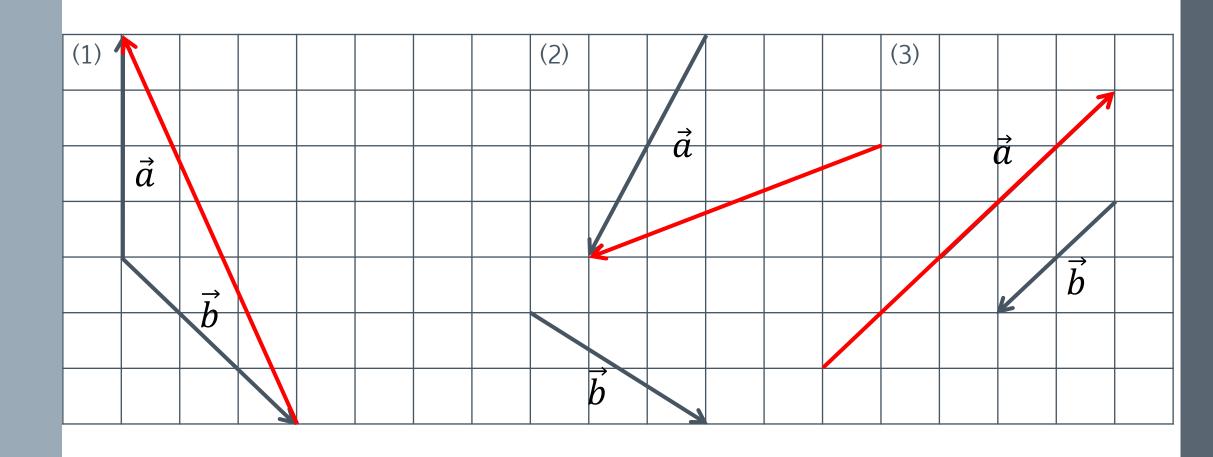
2.
$$\vec{a} + \left(-\vec{b}\right)$$

$$3. -\vec{b} + \vec{a}$$

どれもおなじことを表している。

① 2番目のベクトルの終点から、1番目のベクトルの終点を結んだベクトルが 差のベクトルとなる。

問4の解答



問5の解答

1.
$$\overrightarrow{BD} = \overrightarrow{d} - \overrightarrow{b}$$

2.
$$\overrightarrow{DB} = \overrightarrow{b} - \overrightarrow{d}$$

練習2の解答

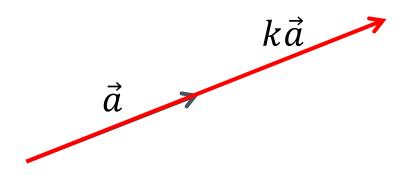
$$\overrightarrow{OC} = -\overrightarrow{a}$$

$$\rightarrow \overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$$

$$\overrightarrow{BC} = -\vec{a} - \vec{b}$$

ベクトルの実数倍 $k\vec{a}$ ($\vec{a} \neq \vec{0}$)

k > 0 k < 0



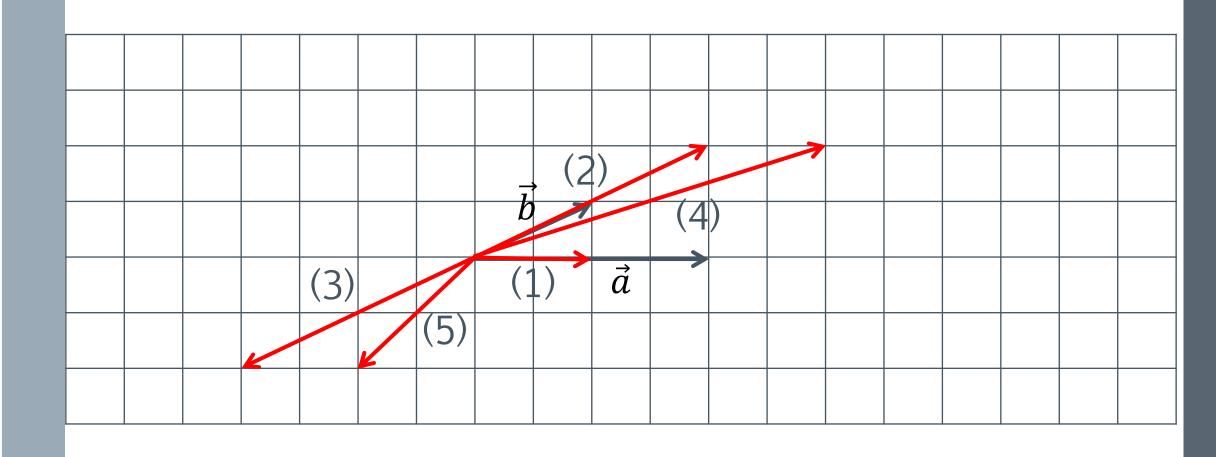
 $k\vec{a}$

 \overrightarrow{a} と向きが同じで、 大きさが $|\overrightarrow{a}|$ の k 倍 であるベクトル \vec{a} と向きが反対で、 大きさが $|\vec{a}|$ の k 倍 であるベクトル

ベクトルの実数倍 k d

k=0 のとき、零ベクトル。すなわち、 $0\vec{a}=\vec{0}$ $\vec{a}=\vec{0}$ のとき、任意の実数 k に対して $k\vec{a}=\vec{0}$

練習3の解答

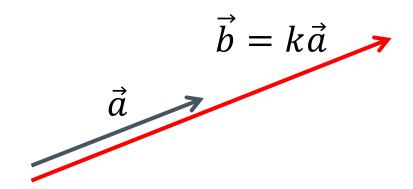


ベクトルの演算

ベクトルの加法、減法、実数倍の計算は

整式の場合と同じ

ベクトルの平行条件 $\vec{b} = k\vec{a}$



$$\vec{b} = k\vec{a}$$

同じ向きに平行

反対の向きに平行

ベクトルの実数倍(k,l を実数とするとき)

$$k(l\vec{a}) = (kl)\vec{a}$$
$$(k+l)\vec{a} = k\vec{a} + l\vec{a}$$
$$k(\vec{a} + \vec{b}) = k\vec{a} + l\vec{b}$$

ベクトルの平行条件 $(\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0})$ のとき)

 $\vec{a} \parallel \vec{b} \iff \vec{b} = k\vec{a}$ となる実数 k がある。

 $\vec{a} \neq \vec{0}$ のとき、 \vec{a} と平行な単位ベクトルは、 $\frac{\vec{a}}{|\vec{a}|}$ と $-\frac{\vec{a}}{|\vec{a}|}$